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ABSTRACT 

This paper defines Infinite horizon linear programs and 
presents a procedure that will approximate the optimal solution 
of almost any infinite horizon linear program that has a finite 
optimal value.    In addition, it is demonstrated that other 
procedures for calculating optimal solutions will not, in 
general* approximate the optimal solution. 
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APPROXIMATION OF OPTIMAL SOLUTIONS FOR INFINITE HORIZON LINEAR PROGRAMS 

by 

Richard C. Grlnold 

0.  INTRODUCTION 

This paper examines long range planning models that can be presented 

as linear programs over an Infinite planning horizon. The main results 

characterize problems that have finite optimal values and establish procedures 

for approximating optlnal solutions by solving a T period linear program. 

Three possible approaches to this task are examined and it Is demonstrated 

that only one procedure leads to solvable T period problems. The T 

period problem is designed by decoupling the infinite problem into the sum 

of a T period problem and another infinite problem that commences at time 

T; call these problems 1 and 2. Any feasible solution of problem 1 produces 

an input into problem 2. The scheme calculates an approximate salvage value 

of the input from problem 1 to problem 2. This salvage value is then included 

in the objective of problem 1. As T increases the error in calculating the 

salvage value becomes less and less significant. The main conclusion of the 

paper are easily stated:  (1) the only defensible way to solve infinite horizon 

linear programs is by the approximation technique outlined in section four; 

(2) duality is not the primary consideration in the study of infinite horizon 

linear programs; (3) the calculation of an equilibrium optimal policy, if one 

in fact exists, does not, in general, assist in the solution of a discounted 

criterion problem. 

The remainder of this section introduces the problem, summarizes results, 

relates this work to others, and describes the notational conventions used 

in the paper. 



Time is discrete    t ■ 0,1,2,  ...,  .    At any time    t    the state of the 

system Is    s .    Decisions   x     are constrained by the relations    Ax    - s , 

x    > 0 .     If decision   x     is taken,  then a reward with time zero value 

a pxt    is received and the state at time    t + 1   Is    b + Kx    .    A   and   K 

are   m * n   matrices,    p   an   n   vector,    b   an   m   vector,    s    an   m   vector 

and   a    a positive scalar less than 1. 

If the Initial (time zero) statu Is    s    then the infinite sequence of 

decisions    {x }    Is constrained by 

Axo - s   , xo > 0 

(1) 

Ax   - b + Kx..   , x    > 0        t > 1 
t t-1        t ■ ■ 

Let    X(s)    be the set of    {x }    that satisfy (1).    For any    {x }    define 

T    ,. 
(2) p({x  )) - 11m Inf I apx    . 

c T * »    0 c 

The optimization problem under consideration Is 

Maximize    p({x }) 

(3) 

subject  to    {x  } e X(s)   . 

Let    e    be a vector of ones, a summation vector.    A sequence    {x  } 

Is called a-oonvergent if the series of Increasing nonnegative terms 

T 
^ a ex  converges to a finite limit. 

Denote X(s) as the set of a-convergent (x } e X(s) , and note that 

00 

p({x.}) - I  o^x.  for {x } E X(s) . 
c   0   c       c 



Section one presents assumptions made In the paper and comments on their 

Immediate consequences and the problem of verification.    These assumptions 

hold throughout and are not restated for each result.    Section two defines 

the optimal value of problem (3) as a function of    s   .    The consequences of 

the assumptions not holding are investigated in sections two and three. 

Section three contains an Important result:    if a program    {x }    is feasible 

but not a-convergent,  then    {x }    Is a bad program in the sense that 

p({xt}) - - -  . 

Section four describes a sequence of solvable    T    period linear programs 

that can be used to solve (3).    The optimal solutions and optimal values of 

the   T    period problems converge to an optimal solution and the optimal value 

of the infinite problem.    Section five presents sufficient optlmality criterea 

and comments on duality and the establishment of necessary conditions for 

optlmality.    Section six examines the question of calculating optimal equilibrium 

policies;  i.e.,    x    <• x    for all    t .    The appendix contains the statement and 

proof of  two lemmas chat are used In the main body of the study. 

This paper Is based on rrevious work by Manne  [13],  Hopkins  [11],[12], 

Hopkins and Grinold  [18],  and Evers   [3].     The work of  Evers,  [3] motivated 

this study and Is the genesis for the important assumption II In section 1. 

Assumptions like II are implicitly made in [13] and [8], however, Evers was 

the first to state and exploit fully this type of assumption.    The assumptions 

as stated In section 1 are satisfied by the class of problems considered in [3]. 

In fact,  in sections 2 and 3 It Is demonstrated that the assumptions are nearly 

the most general possible.    Except: for certain boundary cases,  failure of 

assumption 3   or II Implies the optimal value of (3) Is either   -f <>>    or    - <*> , 

The theorem  in section 2 generalizes a result,  theorem 5.2,   [3].     Evers   [3], 

with more restrictive assumptions,  is able to establish several attractive 
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results that characterize optimal solutions.    However, since the main purpose 

of this paper Is to delineate the class of solvable problems and to construct 

a viable solution procedure;  the more restrictive assumptions of  [3]  are 

not necessary to accomplish this objective. 

The approximation procedure used In section four can be found in  [2],  and 

In [6l-[8],  and [lü]-(13].    In [8] and [2],   ti J procedure solves the infinite 

problem exactly when    T - 0 .    There are,  however, no general convergence 

results available prior to the theorem in section tour. 

Work on optimallty conditions can be  found in  [3], [5], [6] ,(11]-(13], [15]. 

The sufficiency result is identical In spirit to  [12],  and the remarks on 

duality are consistent with [9].    In section six optimal equilibrium policies, 

x   ■ x    for all    t  ,  are discussed.    This question has been studied in 

(1],[4] and [10], 

The following notatlonal conventions are used in the paper.    The symbol 

> 0   means nonnegative;    >_   semi-positive;  and    >    strictly positive.    The 

vector    e    Is used for sunmmations; each element of    e    equals one.    Script    S 

is used as a subsequence of Integers and    S. C 5.    means that   S.    is a 

refinement of    S    .    Frequent use is made of the Heine-Borel theorem; every 

sequence in a closed bounded set of    R     has a limit point in that set. 

Equations are numbered within each section. 



1.    ASSUMPTIONS 

This section presents and explores the assumptions used In all the 

following sections.    The assumptions are 

I:    There exists an a-convergent solution    {x } e X(8)  . 

II:    For every    X , 0 < X < a , there exists a solution    (u,v)    of the 

equations 

(1) u(A - XK) - v + p ,    v > 0  . 

Ill:   One of the following holds. 

(1)    uA"v + p,v>0   has a solution 

(11)    For some   0 < X < a ,    (u,v)    solve (1)  and either 

uA > p    or    uA > 0 . 

(111)    For some    0 < X < a ,    (u,v)    solves (1)  and   uAx    > 0 

or    (v + XK)xt > 0   for all    {xt} e X(s)  . 

We shall see in section 3, that if II and III hold and I does not then 

either the problem is infeaslble or each feasible solution    {x }   has 

p({x }) • - « .    A similar, not quite as strong, converse statement is true. 

Suppose I is true and for some   0 < \ <_ a. , there does not exist a solution 

(u,v)    of 

u(A - XK) - p + v  ,      v > 0 . 

In this case, as is demonstrated in section 2,  the problem is unbounded for 

almost any value of   s . 

Both I and II cannot be verified in general. However, it is possible to 

gain some information about the assumptions. For example, if I is satisfied, 

then there exists a solution   x   of the system 

(2) (A - oK)x - s + ^ ,      x > 0 . 



To see this, multiply the    t       constraint of (1:1) by   a1 , sum and note that 

x ' I aV     satisfies (2).    If (2) Is not feasible,  then I falls.    There Is 
0 

no conclusive test to verify I.    As In linear programming this Is equivalent 

to another Infinite horizon linear program. 

Assumption II Is difficult to verify.    However,  II and III (11) will be 

satisfied If there exists a solution of either 

(3) u(A -aK)-v-p,v>0,uA>p 

or 

(4) u(A -oK)-v-p,v>0,uA>0. 

For (3) note that 

/       \ \ i 
>K) - AK -  (l - M A + ^ (A - a» 

Thus for all    0 < A  < a  , we have 

u(A - AK)  > - v + p  . 

For (4) note that 

Ijj u(A - AK)  > u(A - aK) v + p . 

General verification of II requires that there does not exist a solution 

of the generalized eigenvalue problem 

([W]-[#)•(!) 
with    x,y >^ 0  ,  and    0 < A ^ a 



Assumption III is a patchwork of special cases to cover the apparent 

loophole in II (X - 0).    Note that III  (i) will be satisfied if II holds 

for all   X  , 0 < X < a , or, more directly, if either    Ax • 0 , x ^ 0 

has no solution or   Ax ■ 0 , x ^ 0    implies    px < 0 , or   Ax • 0 , x ^ 0 , 

px > 0   implies   Kx - 0 .    Assumption III is only necessary if    Ax ■ 0 , 

x^0,px>0,Kx^O   has a solution.    Items (ii) and (iii) are directed 

to this particular case.    It is a reasonable conjecture that assumption III 

is not necessary.    At present,  theorem 1, section 3,  cannot be proved without 

III, and it has not been possible to construct a counter example based on 

the failure of III.    The details in III (11) and (ill)  are included to cover 

all the cases used in Evers [3], and, more significantly, to Indicate the 

failure of a possible solution procedure:    see example 3 in section 4.    In 

particular. III  (111)   covers the "primal directed" case [3]  in which   A- (B,I), 

K ■ (H,0)    and   p • (q,0)   .    Each row of    B    Is either nonnegative, or the 

corresponding row of    H    and element of    b    are nonnegative.    This assures 

Ax    >_ 0    for all    t    and    {x  } e X(s)   .    Moreover,    u(A - aK) - v + p 

implies    u > 0 ;  therefore III  (ill) is satisfied. 



8 

2.    THE OPTIMAL VALUE FUNCTION 

Define    V(8)    to be the optimal value of the optimization problem as a 

function of the Initial state    s . 

(1) V(s) - sup{p({xt})   |   {xt} e X(s)} 

Let   F • {a  |  X(s) j $}  , be the set initially feasible states.    If    s t F , then 

V(s)    is defined to be   - » .    This section demonstrates that   V   is convex and 

satisfies a dynamic programming functional equation.    The section closes by 

examining the consequence of assumption II not holding. 

Let   dorn V • {s  | V(8) >-*>}.    Both    F   and   dom V   are convex; and 

dorn V C F .    Let    F C F    be the set of    s    such that I holds.    ¥ C dem V C F . 

Proposition 1; 

V(s)    is concave. 

Proof; 

Following Rockafeilar,   [14], p. 25, note that    V    is concave if and only 

12    12 
if all    A,Y  ,Y  »s   ,s      satisfying 

0 < X < 1  , Vis1) > Y1 , V(s2) > Y2 

imply that 

V((l - A)s1 + Äs2) >  (1 - X)Y1 + XY2 

Select    {xj} e XCs1)    for    i - 1,2,    such that    Y1 < p((xj})  < VCs1)   . 

that    {(1 - Ä)xJ + Xx2} i X((l - X)s1 + Xs2)    and that 

V((l - X)s1 + Xs2)  > p{(l - X)xJ + Xx2} > 

(1 - X)p{xJ} + Xp{x2} >   (1 - X)Y1 + XY2 . 

Note 



In addition,    V   satisfies a dytuunlc prograanlcg functional equation. 

Propoaltion 2: 

On the convex set   F ,    V    satisfies the functional equation. 

(2) V(a) - sup{px + oV(b + Kx)} 

Ax - s , x > 0 . 

Proof; 

If    s e F , and   Ax - a , x > 0 , then   V(s)  > px + aV(b •«- Kx)   .    The 

contrary conclusion would violate (1).   However, for any    e > 0 , it is possible 

to find    {xt} e X(s)    such that 

V(8) > p({xt}) - pxo + op({xt+1» > V(8) - c  . 

Since    {xMl) e X(b + Kx )   , aV(b + Kx ) > op({xfc.1})  .    Therefore 
Cti O O     ■ CTi 

V(s) > px    + aV(b + Kx ) > V(s) - c  , ■      o o    ■ 

i.e.,    V(s)    solves (2).  || 

This next proposition examines the implications of a failure in assumption 

II.    Failure of II Implies for some    0 < X < a  , u(A - XK) - v + p , v > 0 

has no solution.    To rule out a border line case, total failure here will 

mean   u(A - XK) - v + p , v > 0   has no solution. 

Proposition 3; 

If  I holds and,  fur some    X  , 0 < X < o ,  the system 

u(A - XK) > p 

has no solution,  then   V(s) ■ + »    for   s    in the relative interior of    don V , 
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•nd V(s) • - » for s ^ dorn V . V can only be finite on the relative 

boundary of dom V . 

Proof; 

If   u(A -AK) > p   has no solution, then Parkas Lemma implies    (A - AK)y - 0, 

y £ 0 » py ' 0   has a solution. 

Suppose   s e ?   and    {xt} e X(s)   .    Then    (x   + y/Xt} e X(e + Ky/X), 

and    p((x   + y/X  }) • + • .    This implies    V(s)    is an Improper concave 

function and according to Rockefeller,  [14], Theorem 7.2,    V    can only be 

finite on the relative boundary of its domain.  | | 

The following example illustrates the result. 

Exsaple 1; 

-[o10i]'-ß2
0]'-* 

p-(l.-l)    b-(j) 

s    .(•<*) 
0     \802/ 

V(s) if     8   10 

otherwise 

V(8) - 11m Inf T(801 - 802)  . 
•J1   ->   o» 

'02 

dom V 

'01 
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If I fail», then theorem 1 of the next section Indicates that    V(s) ■ - • . 

Either   X(B) • ♦ , or there are no o-convergent solutions In   X(s)   . 

Theorem 1 states that    (x }   not o-convergnet Implies   p({x }) - - « . 



12 

3.     THE CLASS OF OPTIMAL SOLUTIONS 

The section demonstrates that, without loss of generality, problem (1:3) 

is equivalent to 

m 

(1) Max    I aSx. 
0 c 

subject to    {xt} e ^(s)  . 

Solutions  that are not a-convergent are not potentially optimal solutions. 

Theorem 1; 

If (x } t X(8) is not u-convergent, then p({x }) ■ - - . 

Proof: 

Let    X    be the smallest number such that    {x }    is    Y    convergent for 

all    0 < y < \  :    \    is the radiue of oonvergenoe of the power series 
00 

f     t }, Y ex    .    The proof first sliows  that assumption II Implies that any solution 
0 t 

with radius of convergence    \  , 0 < X <_ a    has   p({x }) - - »  .    The remainder 

of the proof,  and assumption III, are needed to deal with    (x  }     that have 

a radius of convergence equal to zero. 

Let    X    be the radius of convergence for the power series    £ Y ex    . 
0 t 

Assume first that   0 < \ <_ a .    If    X>a,  then    {x }    is u-convergent.    If 

the    t        constraint of (1:1) is multiplied by    Xt    and the first    T 

constraints are sunned the result is: 

T T     > 
(2) (A - XK)  I X^.   • a + J xS - X1*^.   . 

0        C 1 t 



li 

T 
Let    M- - ^ X ex    ( end divide (2) by   NL .    Consider lean« 1 in the eppendix 

0 

with    a   ■ A ex^  .    From lenna 1, there exists a sequence    S    , such that t t o 
T T r  t 

s-ZM- - A ex /M- •*■ 0 . Thus on a finer subsequence S C S , I \  x /M- •* x ^ 0 

and 

(A - XK)x - 0 , x ^ 0 . 

From II, there exist (u,v) such that 

u(A -XK)»p + v,v>0. 

It follows that 

px + vx-0  ,vx>0,px<0. 

T    ^ 

f\ It       •• 
For    T r S.   ,    — * px ,  thus    lim inf J A px   « - » .    From lemma 2 in 

1    "T T -»• » 0 

the appendix, with p « - , it follows that p((x }) « - » . 
A t 

CO 

Y ex  is 
0    t 

equal to zero. For any X > 0 , (2) will have a solution. If (2) is divider. 

T 
by   MT * I ^ ex^  • tben there axist a subsequence   S.    and vectors    x(X)   , 

T     0 t i 

y(A)    such that 

u\ 
^-r ■* x(X)  > 0        T e S 

T 

X  X- 
(3) -r-t - y(X)  > 0        T e S 
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(A - AK)x(X)  - -XKy(X) 

ex(X) - 1 , 

x(X)  > y(X)   . 

For    k > - ,  let    X - 1/k , xk - x(l/k)  , yk - y(l/k)   .    There exists a 

subsequence   S  , and points    x   and    y    such that 

xk^x>0       kcS 

(4) yk -•■ y > 0        k € S 

Ax - 0 . 

From assumption III part (1), there exists (u,v) such that 

uA"v + p,v>0. 

It follows that vx > 0 , px < 0 , and for k sufficiently large 

T 
k r t 

px < 0 .  For A - 1/k • M- - 2. ^ eXf * there exists a subsequence S 
T      0 t 

such that 

T    ^ 
I ^Pxt 
a_-..pxk<o. 

T 
It follows that    lim inf £ X px    » - »  , and froo lenma 2, that 

T -* »    0 

p({xt})  - - »  . 

It remains to consider III (11)  and III (111).    From (2) either 

T T-l T 
(5) us + J xSib -    I    x'vx    + I x'px    + XT(u + XuK)x 

1 0 l:      0 C 
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or 

r+i T T 
(6) us +    I    X^h ' I x'vx,. + I Xtpxf. + AT+1uAx_..  . 

1 0 C      0 t T*1 

If either III  (11) or (111) holds,  then either    (v + AuK)xT > 0    or 

uAx   > 0 .    Thus either 

T T-1    t T 
us + [ X^ub >    I    Xzvx.  + I Xcpx. 

1 0 t      0 fc 

or 

T+l T T 
us +    I    xSib >  I XCvx    + I xV   . 

1 0 C      0 C 

In both cases  the left hand quantity is convergent.    If    {x }    is 

not a-convergent,   then    I X vx   ■♦ + • ,   therefore    J X px   ■* - » t and by 

lenna 2.    p({xt}) 

Corollary; 

If I falls then    V(8) ■ - » . 

Proof; 

If    X(s)  - *  ,  then   V(s) - - «- .    Otherwise every    {x  } e X(s)     is not 

a-convergent, by theorem 1    p({x }) ■ - <»  ,  thus    V(8) ■    —    OS 

From (4) in the proof of theorem 1 one can conclude several things. 

First, if Ax • 0 , x j^ 0 has no solution, then each {x } e X(s)  is 

X-convergent for some X > 0 . Second, if Ax - 0 , x ^ 0 implies px < 0 , 

then III (1) is satisfied, and the arguments following (4) apply. 
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Third,  If    Ax-0,x>_0,px>0    Implies    Kx - 0 , then II does not hold 

since    (A - aK)x -0,x^0,px>0    has a solution.    The cases III  (11) 

and (ill) are only needed If   Ax-0,x^0,px>0   and   Kx i* 0  , 

has a solution. 
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».    FINITE HORIZOM APPROXIMAnOMS 

This section considers s finite (T   period) horizon approximetion 

program end demonstrstes thet the optimel solutions of the   T   period 

problems converge to the optimel solution of the Infinite horizon problem. 

The   T   period problem is 

T 
Max    I a'px* 

0 z 

T      T subject to Ax0 ■ s , x- > 0 

(1) 

AxTt - b + Kx^ , xj > 0 

(A " aK)xJ " 1^ + «Vi J *? i 0 

T Define   V (s)    as the optimal value of (1). 

Proposition A; 

Problem (1) has an optimal solution for all   T , and 

(1)    VT(s) > VT+1(s) > V(8)   . 

(11)    VT(s)  - msx[px + aVT(b + Kx)l 

Ax » s  , x ^ 0  . 

Proof: 

The duel of (1)  Is 
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T-l 
Minimize   uj» +   I    ujb + ujb/l-a 

(2) subject to   UJA > a'p + u*    K    for    0 < t < T - 1 
t  ■   r    trl ■  ■ 

uJ(A - aK) > aTp 

T   t 
Let, by II,  (u,v) satisfy u(A - oK) - v - p , v > 0 . Then u - a u 

Is feasible for (2). Also, suppose that (x } e 7(s) , then 

x       t < T 

T 
x. 

I I    a x        t - T 
"t-T 

Is feasible for (1).    Since (1) and (2) have feasible solutions,  they have 

optimal solutions. 

T Suppose    u      solves the    T   period approximation,  then 

Is feasible for the    T + 1    period dual, with value 

T T-l 
UQS + J utb + au^/l-o ■ u08 +    I    utb + uTb/l-a - V (s) 

T+l T 
Therefore   V      (s) < V (s)  . 

For any    (x  } e X(s)   , a feasible solution of (1), using (3), can be 

T constructed.    Thus from Theorem 1,    V (s)  > V(8)   . 
T 

Item (11)  follows directly from the definition of    V (s)   .   || 
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Theortm 2; 

For each   T , let    ixl)   be the optimal aolutlon of (1), where 

xj - 0,t > T . 

(1)    There exists an optimal solution    (x  }    of the Infinite horizon 

problem. 

(11)    For every    T  ,  there exists a sequence   S      such that 

xj > xt.    for    0 < t < T  , T t ST  . 

(iii)    VT(8) - I a'pxj ^ V(8) - I o'px 
0 ' 0 

Proof; 

OD 

t.„T Let    Kj. ' I cizexl    and note that 
1      0 c 

(5) (A- olO^aScJj- 8 +^ . 

Suppose    Kj.   ► + <,,    on some subsequence    S   f   then there exists a subsequence 

S. C S , and a vector    z    such that 

t T, I a'xJ/Hj. - z      T c S1 

(6) 

(A - aK)z - 0 , « >. 0 . 

Since 11 is valid, there exists (u,v) such that u(A -oK)«p + v,v>0. 

Thus, 0 - pz + vz , vz > 0 ; supz < 0 . For T e Sl , V (e) - HPPZ.J, > V(s) > - 

However, M- -» + o» , pz. ♦ pz  0 . Thus contradiction indicates that 

M - lim sup H. -^ + « . 
T 
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T t        T For «ach   t , ex    < M/a    , x   > 0 .    Thus there exist* a sequence   S    , 

T end vector   x     such that   x   -* x     for   T e S    .    In general there exist 
O 0 0 o 

e sequence 5 C S . end vector x  ouch that 
^       T •■ T-l T 

T 
x-^x   TcS , 0 < t < T . 

It follows that    {x } c X(s)    and   I a'ex    < M .    To verify this lest claim 
c 0 c ' 

note that for each    T   and    T , 

T CD 

I afexl < M -    y    o'ex^ < M 
0 * T+l C 

The limit over   T e 5    , yields   £ a ex    < M .    Thus    {x ) e X(8)  ; and 
0 C ' t 

I a px* - VT(8) > V(s)  > I a^x. 
0 0 c 

In the limit 

*    T - <• * V    t lim ^ a px   - c + J a px    ,  e > 0 
T-» 0 ' 0 v 

If    e - 0 ,  the proof is completed.    Suppose in contrast    e > 0 .    Then for 

eech   T 

t  / T I a p(x   - x ) > e > 0  . 
0 t        c 

Let u,v solve u(A - aK) ■ p + v , v > 0 .  Prom (5) 

/£.\ i. aub  r  t T  r  t  T (6) us + r—- - I a vx    - I a px 
1 a  0       0    C 



Sine«   {xt,} e X(«)  , 
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(7) . oub     r   t r    t 
»»• + T^ - I 0 ^t " i 0 pxt 'l 0     0 0 

Subtract (7) fron (6)  to obtain 

I aW - x.) - £ a'vCx^ - xj)  > E > 0 
o 0 

or, for any   T 

(8) I atv(x|. - x^) +   £   aW  > £ +   J    a'vx^ > e > 0 . 
0 c        T        T+l c T+l T 

However, the left hand side of (8) can be made arbitrarily small.    First 

choose   T    large enough so that 

0 <    )[   oSnt    < e/3 
' t+l t ' 

Then there exists a   T     such that   for all   T e S    , T > T 

I otv(xt - x^)  I  < e/3 .   I I 

Corollary 2; 

For   a t F 

V(s) - max(px + aV(b + Kx)] 

Ax a s , x > 0 . 
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One tempting variant on the approximation scheme described here is to 

terminate the    T   period problem by requiring that    x    - x      for   t > T . 

The example below shows this is not generally applicable since I and II 

may be satisfied yet    (A - K)x - b • x > 0   may not have a solution. 

Example 2;    A - 1, K - 1.6, b"l, p"l, s-l, a»^ 

n Mt+l     i "   t 
*.. ■ V*'0/ i8 feasible and   T oV   - 2.222 ...   , yet t 0.6 g        t ' 

(A - K)x - 1 , x > 0    has no solution. 

Another possible way to approximate the infinite problem is to simply 

truncate the decision process at time    T   by solving 

T 
Max I a px 

0 c 

T T subject  to    Ax. ■ s  , x    > 0 

T T T 
Ax* - b + Kxi .   , x*  > 0 t t-1        t - 

1 < t < T  . 
m m 

However, our next example shows that problems of  this sort may be 

unbounded for all    T . 

Example 3; 

.      Pi    0 1 0]       p - (1.1,0,0) 
L0-10lJ    -(oV-io1) 
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Note that I, and II are satlafled.    In addition. III (iii) la satisfied 

alnce for every   (xt}   Axt - b ■♦• Kx^ > 0 .    In addition,    u(A - aK) - v + p , 

v > 0   has a solution with   u > 0 . 

To see the problem Is unbounded, note that any positive multiple of the 

vector   y   - (0,1,0,1)    can be added to   x^ .    Thus arbitrarily large profits 

are possi )le at time    T . 



£•» 

5.    OPTIMALITY CONDITIONS; DUALITY 

This section briefly consider optlmallty conditions, establishes 

sufficient conditions for optlmallty and coonents on necessary conditions 

and duality. 

Theorem 3; 

If    {x } e X(s)    and there exists    (u }   such that 

(i)    || ut ||   < aSl 

(11)    u^ - vt - aS + u^jK . vt: > 0 

(ill)    vtxt - 0 

then    {x }    is optimal. 

Proof; 

From (11) and (ill) 

I u Ax    - I u      Kx   - I u (b + to ) - J u Kx 
0 1    l 0 1 

V + I utb ■ ^ otpxt 0      1   c      o        ■ 

If    {x  }    is another feasible solution not in    X(8)   , then    p({x }) 
■a 

If    {IT ) c X(8)  , then from (1)    I u Ax    < » ;  thus 
0    t    t 

I a*?*   - u a + ^ u b - I v x   + J o px    > [ a px 
0 tolc0cc0 Z      0 C 
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It Is possible to de fin« a dual Infinite horizon program. 

T 
minimize    11m sup u s + £ u b 

T -» «      0       1   t 

(1) 

subject to   u A - v   - a p + u    .K » v    > 0 . 

Proposition 4; 

The maximum primal Infinite horizon problem has a value greater than or 

equal to the optimal value of the minimization problem. 

Proof: 

T Consider the dual linear programs,  (4:2).    The optimal solution    (u } 

T        t~T T determines a feasible solution of (1) with   u   ■ a     u-    for    t >_ T .    That 

T solution has value   V (s)  .    Thus the inflmum In (1) Is less than or equal 

tO     V(8)   .    || 

Suppose for   P > 1 , ui(A - PK) > 0  , ub < 0   has a solution.    Then If 

u(A - aK)  > p •  (a u + p u}    solves (I),  and    11m sup(u + u)s + 
X T * 0B 

^ (u u + p u)b - - öD ,    Thus to Insure (1) has a finite lower bound, one 
0 
must at teaet require    (A - pK)x - b  , x > 0    has a tolution for all    p > 1 . 

This is too stringent on assumption. 

If one requires that dual solutions satisfy    M u
t II ^ 0 "    for 80me 

N ,  then the Inflmum of (1) Is equal to the maximum of the original problem. 

T Recall the definition of   u     In section 4 and the construction of the 

optimal solution    {x } .    Let   M   - sup a    ||  u    ||  .    If a subsequence   S 
t i        t t 

exists such that   M< N   for   T e S , then It is possible to establish the 

existence of    (u } , such that 
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(1)    </ I I ut I I   < M 

(il)    utA - vt - a'p + ut+1K . Vj. > 0 

(111)    vtxt - 0 

T (Iv)    There exists    S      such that    u   ■»• u     for   Te5    i 0 < t < T   . 

This fact Is easy to establish.    However, It Is of little use unless conditions 

which bound   H-   can be deduced from the data   A,K,p,b,a . 
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6.    EQUILIBRIUM SOLUTIONS 

In (1),   [4] and [10],  the problem of finding an equilibrium optimal 

solution   x    ■ x    for all    t   was considered and solved in a most elegant 

vay.    This section points out that knowledge of an equilibrium optimal 

solution is not particularly helpful in solving problem (1:3). 

Suppose the system 

(1) (A - K)x - b  . x > 0 

has a feasible solution. Then, if x , satisfies (1), {x - x} e X(b + Kx) 

and V(b + Kx) > *j- . Now consider, the optimization problem 

Max px 

(2) 

subject to (A - K)x - b , x > 0 . 

Suppose first that (2) has unbounded solution; i.e., py > 0 , (A - K)y - 0 , 

y > 0 has a solution. Then for any s c F 

V(s + viKy) > V(s) + -^ py , 

since    (x   + uy) e X(s + pKy)    for all    {x } e X(s)  .    In this case the function 
1 z * 

* A nyt 
V is unbounded. If (2) has an optimal solution, x , then V(b + Kx ) > *— . 

■ l-a 

Now suppose an equilibrium optimal solution   x   exists; i.e., 

(A - K)x - b  , x > 0 , V(b + K30  - ?- •    It follows that either    x    solves 

(2) or 

(3) V(b + Kx*)   > ?IJ > f— - V(b + KX) 

* * 
Thus the suboptimal solution s • b + Kx , and x « x  for all t is 

preferable to the optimal solution s-b + Kx,x-)f for all t . 
• t 
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More general equilibrium policies can be discovered by allowing a    T 

period cycle;  i.e.,    s - b + Kx. .    Solve with    s    as a variable 

T 
Max    I otpxt 

subject to    -Is 4- Ax    - 0 , x    > 0 "* o o ■ 

Ax - b + Kx..  1,xt>0      1 < t < T t t-1        t ■ ■      - 

Is -    cT ■ b   . 

T If   W      is the optimal value of  (4), and    8,x , .... x_    is the optimal 
O T 

solution, then 

v(s) i T^iT i v(b + ^ i^ • 1-a 

*       * 
Since b + Kx , x « x  is feasible for (1). 

Thus if optimal equilibrium solutions can be calculated then "better" 

suboptimal solutions can be calculated using (2) and (4). These calculations, 

however, are not directly useful in the solution of the original optimization 

problem. The more direct procedure outlined In section 4 yields approximately 

optimal value and an approximately optimal first period decision that is 

consistent with the initial state s . 
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7.    APPENDIX 

This appendix contains two lemmas used In the proof of theorem 1. 

Lemma 1; 

If 

(I)    a, > 0   all    t t ■ 

(11)    I AV   < + «    if    0 <. X  <  1 
0        t 

T 
(ill)    lim [ a    - + » 

aT then    lim inf  0  . 

£ "t 0 

Proof: 

* 
If the result is false, there exists an    1 > e > 0 , and   T     such that 

for all   T > T* 

(i) s ^e i Ä
t • 1 0 

* 
T 

Let b ■ I ak and b - a* ,. . Therefore 
O   )J  t        t    1 TC 

T 

(2) bT i ^ ^ bt  for a11 T * 

or 

(\ T-l      T-l 
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It can be established by Induction that 

(4) bT > y(l + ii)T'\  for T > 1 . 

(3) demonstrates that (4) is true for T - 1 . To check T + 1 note 

that 

. 4+„ 4^4. 
w(l + v)Tbo . 

This  Indicates that 

\ >\ ■ i&) b o 

where A ■ 77— < 1 . 
1+u 

However 

T*+T       T* T t 
I*  A a - X1 I x\ 
t +1        z 1   c 

r    t which Implies    )   A  a.     diverges, 
0        t 

2: 

T T 
If    llm tnf J a    » - 00   and    p -_ I ,  then    11m Inf ][ p a    - - -» 

T>»0 T-^^O 
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Proof; 

T 
Trivial If p ■ 1 . Let rT ■ ][ p • , and u ■ 1/p < 1 . Then, 

T  0   t 

(5) I a - (1 - M) I u'r. + yT+1rT . 
0 C        0   C      T 

If lia Inf r > - • , then r. must be bounded below. I.e., r_ > M 
X -»• • T " 

for all T . Thus from (5) 

f at > [(1 - y) f gt + pT+1l M - M 

which contradicts the hypotheses. 
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